Q:

What is the formula for radius?

A:

The formula for a radius is the diameter of a circle divided by two. The radius of a circle is defined as the distance from the middle of a circle to any point on the edge of the circle.

Another way to calculate the radius of a circle is by using the circumference. The equation using the circumference is the circumference of the circle divided by pi times two. Pi (π) is a number that is approximately 3.14. The radius can also be calculated if the area is known; the radius is equal to the square root of the area of the circle divided by pi.

Sources:

  1. mathopenref.com

Is this answer helpful?

Similar Questions

  • Q:

    What is the formula for the area of a circle?

    A:

    The formula for the area of a circle is pi multiplied by the radius of the circle squared. The radius of the circle is the length of a straight line stretching from the center of the circle to the line of circumference. It is equal to half the diameter.

    Full Answer >
    Filed Under:
  • Q:

    How do you convert radians per second to meters per second?

    A:

    To convert radians per second to meters per second, multiply theta, the rate of motion in radians per second, by the radius of the arc along which the motion is taking place. The radius measurement must be in meters.

    Full Answer >
    Filed Under:
  • Q:

    How do you find the volume of a sphere?

    A:

    Find the volume of a sphere by solving for the equation V=4/3*pi*r^3, where V is volume, r stands for radius and pi is 3.1459. Cube the radius, and multiply that number by pi and 4/3 for the volume. Pi delineates the relationship between a circle's diameter and circumference.

    Full Answer >
    Filed Under:
  • Q:

    How do you find the volume of a cone?

    A:

    The volume of a cone is found by multiplying the area of the circular base by the height of the cone, and then dividing the product by 3. The area of the base is found by taking the square of the radius and multiplying it by pi.

    Full Answer >
    Filed Under:

Explore