dictionary.reference.com/browse/affine geometry

en.wikipedia.org/wiki/Affine_geometry

In mathematics, affine geometry is what remains of Euclidean geometry when not using the metric notions of distance and angle. As the notion of parallel lines is ...

mathworld.wolfram.com/AffineGeometry.html

An affine geometry is a geometry in which properties are preserved by parallel projection from one plane to another. In an affine geometry, the third and fourth of ...

math.ucr.edu/~res/progeom/pgnotes02.pdf

AFFINE GEOMETRY. Theorem II.1. Let x, y and z be distinct points of S such that z ∈ xy. Then {x,y,z} is a noncollinear set. Proof. Suppose that L is a line ...

www.cis.upenn.edu/~cis610/geombchap2.pdf

Corresponding to linear combinations of vectors, we define affine combina- tions of ... Our presentation of affine geometry is far from being comprehensive,.

www.cut-the-knot.org/triangle/pythpar/Geometries.shtml

In this context, the word affine was first used by Euler (affinis). In modern parlance , Affine Geometry is a study of properties of geometric objects that remain ...

math.berkeley.edu/~ceur/notes_pdf/Eur_Math152_AffGeom.pdf

Oct 21, 2014 ... following and rephrasing “Faculty Senate Affine Geometry” by Paul Bamberg in a more mathemat- ically conventional language (so it does not ...

math.stackexchange.com/questions/264857/difference-between-projective-geometry-and-affine-geometry

As far as I understand Affine transformation preserves parallelism and ratios of lengths. Consider a transformation which maps distinguished line from ...

arxiv.org/abs/1612.05819

Dec 17, 2016 ... Mathematics > Differential Geometry ... We consider an analogous characterization of affine automorphisms for compact quotients, and ...